Linearizing Computing the Power Set with OpenMP

11th IEEE Workshop Parallel / Distributed Combinatorics and Optimization

May 17, 2021

Roger L Goodwin

Introduction

- This paper presents 4 methods for computing the power set.
 - Three methods are serial.
 - One method is parallel.
- The three serial methods are:
 - Recursive algorithm.
 - Count-in-binary algorithm.
 - Disjunctive normal form algorithms --- serial version, no OpenMP directives.
- The one parallel method is:
 - Disjunctive normal form algorithms --- parallel version, uses OpenMP directives.

Methods - Overview

• Each method will be briefly explained next.

Methods – The Recursive Algorithm

- The recursive method contains two algorithms:
 - 1) One algorithm partitions the problem by incrementing two counters **k** and **m** in recursive calls.
 - 2) The other algorithm creates the actual sets in the power set $P(\prod)$ from a set of integers.
- When $m > n = |\prod|$, then the first algorithm terminates.
- Both algorithms create **2ⁿ-1** sets in the power set
 - Excluding the empty set

Methods – The Count-in-Binary Algorithm

- The count-in-binary (CIB) method creates **2ⁿ-1** sets in the power set.
- The method is simplistic:
 - 1) Count from 0 to **2ⁿ-1** in decimal
 - 2) Convert the count to binary
 - 3) Include/exclude elements from the given set \prod using the binary number
 - 1) 0 =exclude an element from \prod
 - 2) 1 =include an element from \prod
- This particular implementation of the CIB algorithm reverses the ordering of the elements in the sets

Methods – The Count-in-Binary Algorithm

- For example, instead of computing the set {a, b, c}; the CIB algorithm computes {c, b, a}.
 - Which are equivalent sets
- We make no effort to pad the binary numbers to the left with zeros.
- We make no effort to sort the computed sets so that the sets are more aesthetically pleasing.
- Hence, we present a Laissez-Faire CIB algorithm.

- The disjunctive normal form (DNF) method contains preprocessing steps.
 - The partition of the binomial coefficient function (BCF)
 - Load balancing using the partition of the BCF (PBCF)
- The BCF is as follow:

$$\binom{n}{m} = \frac{n!}{(n-m)!m!}, \ 0 \le m \le n.$$

- The BCF is a symmetric function.
 - It sums to **2**^{*n*} for **m** = {**0**, **1**, ..., **n**}.
 - The maximum is at $\lfloor n/2 \rfloor$ for even n.
 - See graph on next slide (blue dashed line).

- We partition the BCF "given" the first element in the power set.
 - This will be explained later.
- Note: Ignore sets with cardinality 1 or *n*.
- Instead of programming the BCF function, we program the PBCF. $h(n,m|S=s) = \frac{\prod_{i=1}^{m-1}(n-m) - (s-1) + i}{\prod_{i=1}^{m-1}i}$

- The variable **s** is the cardinal number to the first element in the set.
- Two noticeable characteristics of the PBCF:
 - One-half of the values are zero
 - The function drops significantly for small s
- Only certain arrangements in the powerset are allowed using the DNF algorithms.
 - Due to problem restrictions.
- The next slide gives an example.

- <u>Suppose</u> ∏ = {a, b, c, ..., z} and **m** = 2.
- Consider the sets {a, b}, {a, c}, {a, z}, ..., {x, y}, {x, z}, {y, z}.
 - The number of sets beginning with the element x is h(n, m|S = 24) = 2.
 - The number of sets beginning with the element y is h(n, m|S = 25) = 1.
 - The number of sets beginning with the element z is h(n, m|S = 26) = 0.
- But,
 - The number of sets beginning with the element a is h(n, m | S = 1) = 25.
 - The number of sets beginning with the element b is h(n, m | S = 2) = 24.
 - The number of sets beginning with the element c is h(n, m | S = 3) = 23.

- Remove the restriction m = 2. Then, $2 \le m \le 25$.
- Only one additional set {x, y, z} is added to h(n, m|S = 24).
- Many sets are added to h(n, m | S = 1), (n, m | S = 2), and
- h(n,m|S=3).
 - h(n, m|S = 1) = 33,554,430
 - h(n,m|S=2)= 16,777,215
 - h(n,m|S=3)= 8,388,607
- This is due to the nature of the problem.
- With the cardinality and the partition, it is possible to break-up the BCF which leads to computing the power set faster in a parallel computing environment.

- Next, we discuss load balancing.
- We perform load balancing before the DNF algorithms are run.
- The load balancing algorithm is a 2-pass algorithm:
 - Pass 1 computes an (*n-1*) x (*n-1*) table using the PBCF. The columns represent the cardinality *m*. The rows represent *s*.
 - Pass 2 redistributes the *q*-maximums to the rows in the table with the least number of sets (using the row totals).

- Load balancing ensures that a single task does not compute all of the sets with a cardinality close to $m = \lfloor n/2 \rfloor$ and s equal to 1.
- Instead of arbitrarily setting *q*, we calculate the *q*-maximums in the (*n-1*) x (*n-1*) table using the following formula:

$$q_i = \begin{cases} 1, & \text{If } \sum_{m=1}^n h(n, m | S = s) < \max_{(i)}. \\ 0, & \text{Otherwise.} \end{cases}$$

where *i* is bounded by $i \in \{1, 2, ..., n-1\}$; max_(i) is the *i*-th largest integer in the table; the sum $\sum_{i=1}^{n-1} q_i$ equals to the number of *q*-maximums.

- For the trivial case m = 1, the 2-pass round robin algorithm simply puts the n computations into a single task.
- The figure on the next slide compares the round robin distribution to the BCF.
 - The flat line (in black) shows the final distribution after the 2-pass round robin algorithm.
 - We prefer the flat line compared to the other two distributions when computing the power set.
- The slide after next (slide 17) shows a partial $(n-1) \times (n-1)$ table with n = 12.
 - It is always the case that the upper, center part of the table needs to be load balanced.
 - **q** = 7
 - Do not forget to zero-out the *q*-maximums.

												Row
m =_	1	2	3	4	5	6	7	8	9	10	11	Totals
	12	11	55	165	330	462	462	330	165	55	11	2,058
	0	10	45	120	210	252	210	120	45	10	1	1,023
	0	9	36	84	126	126	84	36	9	1	0	511
	0	8	28	56	70	56	28	8	1	0	0	255
	0	7	21	35	35	21	7	1	0	0	0	127
	0	6	15	20	15	6	1	0	0	0	0	63
	0	5	10	10	5	1	0	0	0	0	0	31
	0	4	6	4	1	0	0	0	0	0	0	15
	0	3	3	1	0	0	0	0	0	0	0	7
	0	2	1	0	0	0	0	0	0	0	0	3
	0	1	0	0	0	0	0	0	0	0	0	1
L												1

Dave

- Some notes:
 - The most computer intensive sets to compute are those sets that have been redistributed by the round robin algorithm.
 - The round robin algorithm implements the *q*-maximums by writing snippets of code which has to be inserted into the tasks.
 - Using both the PBCF and the 2-pass round robin algorithm, the entire power set for *n* = 26 can be computed in 55 seconds on the laptop used in [5], [6]. This is a 42.7% reduction in run-time.

Methods

- The differences between the CIB method and the DNF method:
 - The CIB method contains two algorithms. The DNF method contains *m*-1 algorithms --- one algorithm for each cardinality *m*, 1 ≤ m ≤ n-1.
 - The CIB algorithm terminates after **2ⁿ-1** iterations. The DNF algorithms terminate after a pre-determined maximum has been reached.
 - The CIB main loop contains a single DO loop. The DNF algorithms' loops contain *m* loops for each cardinality.

Methods

- Advantages of each method:
 - The recursive algorithm is easy to program.
 - The CIB algorithm is easy to understand and easy to program.
 - The DNF algorithm runs in linear time in a parallel computing environment.
- Disadvantages of each method:
 - The recursive algorithm runs in exponential run-time.
 - The CIB algorithm runs in exponential run-time.
 - The DNF algorithm requires pre-processing.

- We evaluate the methods on the Stampede2 supercomputer using the Skylake (SKX) compute nodes.
- We will:
 - Construct a task graph to show potential parallelism.
 - Run the Intel Advisor to show the top 5 time consuming loops.
 - Construct a scalability curve.
 - Summarize the results of the algorithms.
 - Outline a method to compute the power set for large *n*.

- We construct a task graph of the DNF algorithm to show the *possible parallelism* in the program.
- The widest part of the graph shows the possible parallelism.
- The critical path shows maximum run-time of the program.
 - Because computing 5,200,300 sets with 14 nested loops is more computer intensive than computing 5,200,300 sets with 13 nested loops.
- See the Figure on the next slide.

- The Intel Advisor is a source code profiling tool.
- The Intel Advisor shows the top 5 time consuming loops.
 - The algorithms with the largest number of sets to compute and those algorithms with the greatest number of nested loops about the center *n*/2.
 - Take the most time to compute the power set.
- See the Table on the next slide.

Top time-consuming lo	e-consuming loops				
Loop	Self-Time	Total Time	Trip Counts		
[loop in dnf_new_14]	3.582 s	16.330 s	1		
[loop in dnf_new_13]	3.511 s	16.360 s	1		
[loop in dnf_new_12]	3.210 s	14.029 s	1		
[loop in dnf_new_15]	2.779 s	13.960 s	1		
[loop in dnf_new_11]	2.441 s	10.400 s	1		

- The Intel Advisor Source Code Profiling tool is useful at times
- It can be used to confirm information you already know
- For instance, the top 5 time-consuming loops
 - You know which ones they are
 - The Intel Advisor tool confirms this

- Some notes on the Intel Advisor.
- The Intel Advisor suggests changing the data type inside the loop so that it matches
 - This will have a better chance of using the full vector register width
 - I modified the code to use the I(4) data type
 - The code ran twice as slow

- The next slide shows the scalability curve for the OpenMP DNF algorithm.
 - The scalability graph shows a linear relationship between cores versus speedup.
- We estimated the percentage amount of serial code using Equation (6) in the paper.
- Then applied Amdahl's law to obtain the scalability curve.

29

• The following table summarizes the results of the timing study of the different methods.

n	то	T1	T2	Тр	q	CV	Sp	Ер
15	0.04	0.04	0.2	0.2802	9	0.6	0.7	1.4%
16	0.1	0.1	0.2	0.1832	10	0.3	1.2	2.5%
17	0.2	0.2	0.3	0.2549	11	0.7	1.0	2.0%
18	0.4	0.3	0.3	0.2155	12	0.5	1.3	2.8%
19	0.8	0.7	0.3	0.1174	13	0.2	2.8	5.9%
20	1.6	1.5	0.4	0.2557	14	0.7	1.7	3.5%
21	3.3	3.1	0.6	0.1097	15	0.1	5.4	11.3%
22	7.1	6.5	1.0	0.1770	16	1.1	5.5	11.4%
23	14.5	13.5	1.8	0.1487	17	0.8	11.8	24.6%
24	30.6	28.0	3.4	0.1149	18	0.3	29.3	61.0%
25	62.7	58.2	6.7	0.1733	18	0.4	38.5	80.3%
26	131.4	117.4	13.6	0.2746	20	0.5	49.5	103.1%
Avg							12.4	25.8%
Min							0.7	1.4%
Mav				0 220106			10 5	102 10

30

- T₀ = recursive algorithm (seconds)
- T₁ = CIB algorithm (seconds)
- T₂ = non-OpenMP DNF algorithms (seconds)
- T_p = OpenMP DNF algorithms (seconds)
- Only one coefficient of variation (CV) above 1.0
 - Much variability about the average.
- We obtain an efficiency (EP) of 100% (accounting for variability) because the serial algorithm $\rm T_2$ ran poorly and the parallel algorithm $\rm T_p$ ran efficiently.

- The serial algorithms T_0 , T_1 , and T_2 have exponential run-time curves.
- The T_p parallel algorithm (OpenMP DNF algorithm) has a nonexponential run-time curve.
- The graph on the next slide shows the graph for the input sizes versus the run-times for the OpenMP DNF algorithm.

- Recommendations from the timing study
- The Stampede2 supercomputer is a shared machine
 - If another job is thrashing while your job is running, this will affect your timing study
 - Run your job numerous times on different days to get a good timing

- We computed the power set in its entirety for n = 15, 16, ..., 26.
- Consider computing the power set for n = 150 and n = 45,136.
- Obvious some implementation limitations will come up:
 - Integer exceeds machine limits.
 - Segmentation fault.
 - A single user can only have 25 jobs in queue at a time.

- Some possible workarounds include:
 - Use the –fno-range-check option when compiling the code.
 - Overwrite the values in the array when the index reaches **2**³¹.
 - Wait until some of the jobs have finished, then submit more jobs.
- The *q*-maximums are a second source of exponentiation.
 - These values must be partitioned into smaller sets.
 - We divide by 2^{n-15} . This is also the required number of threads.
 - Leave the remaining distribution as-is from the 2-pass round robin algorithm.

- We conduct a small timing study up to *n* = 150 as a proof of concept.
- The max time always occurs at the largest *q*-maximum max_(n,1) for any n.
- This small timing study saves a single computation from a single partition from $\max_{(n,1)}$ for n = 15, ..., 150.
- The next slide shows a graph of the input size versus the run-times.
 - Using multiple nodes and multiple cores.

38

- The graph on the previous slide has 2 plateaus.
 - These plateaus are probability due to the amount of nested loops as *n* increases.
- Additional obstacles must be overcome before computing large power sets:
 - Compute the factorial of a number larger than n = 150; say n = 1,000 to 45,136.
 - Automatically monitor the queue; and submit a batch job when one job has finished.

- Using the model from the timing study y = 0.0008n + 0.0883, it is estimated that it will take 36.1971 seconds to compute the largest partition for the power set for n = 45,136.
 - The remaining tasks are smaller and will take less time.
 - On the Stampede2 SKX compute nodes

Questions

- Thank you for attending.
- Does anyone have any questions?
- Profile and research: https://rogerlgoodwin.brandyourself.com