
Linearizing Computing the
Power Set with OpenMP
11th IEEE Workshop Parallel / Distributed Combinatorics and

Optimization
May 17, 2021

Roger L Goodwin

Introduction

• This paper presents 4 methods for computing the power set.
• Three methods are serial.
• One method is parallel.

• The three serial methods are:
• Recursive algorithm.
• Count-in-binary algorithm.
• Disjunctive normal form algorithms --- serial version, no OpenMP directives.

• The one parallel method is:
• Disjunctive normal form algorithms --- parallel version, uses OpenMP directives.

2

Methods - Overview

• Each method will be briefly explained next.

3

Methods – The Recursive Algorithm

• The recursive method contains two algorithms:
1) One algorithm partitions the problem by incrementing two counters k and

m in recursive calls.
2) The other algorithm creates the actual sets in the power set Ρ(∏) from a set

of integers.

• When m > n = |∏|, then the first algorithm terminates.

• Both algorithms create 2n-1 sets in the power set
• Excluding the empty set

4

Methods – The Count-in-Binary Algorithm

• The count-in-binary (CIB) method creates 2n-1 sets in the power set.
• The method is simplistic:

1) Count from 0 to 2n-1 in decimal
2) Convert the count to binary
3) Include/exclude elements from the given set ∏ using the binary number

1) 0 = exclude an element from ∏
2) 1 = include an element from ∏

• This particular implementation of the CIB algorithm reverses the
ordering of the elements in the sets

5

Methods – The Count-in-Binary Algorithm

• For example, instead of computing the set {a, b, c}; the CIB algorithm
computes {c, b, a}.

• Which are equivalent sets

• We make no effort to pad the binary numbers to the left with zeros.

• We make no effort to sort the computed sets so that the sets are
more aesthetically pleasing.

• Hence, we present a Laissez-Faire CIB algorithm.

6

Methods – The Disjunctive Normal Form
Algorithm
• The disjunctive normal form (DNF) method contains preprocessing steps.

• The partition of the binomial coefficient function (BCF)
• Load balancing using the partition of the BCF (PBCF)

• The BCF is as follow:
!

! !
m ≤ n.

• The BCF is a symmetric function.
• It sums to 2n for m = {0, 1, …, n}.
• The maximum is at n/2 for even n.
• See graph on next slide (blue dashed line).

7

Methods – The Disjunctive Normal Form
Algorithm

8

Methods – The Disjunctive Normal Form
Algorithm
• We partition the BCF “given” the first element in the power set.

• This will be explained later.

• Note: Ignore sets with cardinality 1 or n.

• Instead of programming the BCF function, we program the PBCF.

9

Methods – The Disjunctive Normal Form
Algorithm
• The variable s is the cardinal number to the first element in the set.

• Two noticeable characteristics of the PBCF:
• One-half of the values are zero
• The function drops significantly for small s

• Only certain arrangements in the powerset are allowed using the DNF
algorithms.

• Due to problem restrictions.

• The next slide gives an example.

10

Methods – The Disjunctive Normal Form
Algorithm
• Suppose ∏ = {a, b, c, …, z} and m = 2.

• Consider the sets {a, b}, {a, c}, {a, z}, …, {x, y}, {x, z}, {y, z}.
• The number of sets beginning with the element x is = 2.
• The number of sets beginning with the element y is = 1.
• The number of sets beginning with the element z is = 0.

• But,
• The number of sets beginning with the element a is = 25.
• The number of sets beginning with the element b is = 24.
• The number of sets beginning with the element c is = 23.

11

Methods – The Disjunctive Normal Form
Algorithm
• Remove the restriction m = 2. Then, 2 ≤ m ≤ 25.

• Only one additional set {x, y, z} is added to

• Many sets are added to ,
.

• ℎ 𝑛, 𝑚 𝑆 = 1 = 33,554,430
• ℎ 𝑛, 𝑚 𝑆 = 2 = 16,777,215
• ℎ 𝑛, 𝑚 𝑆 = 3 = 8,388,607

• This is due to the nature of the problem.
• With the cardinality and the partition, it is possible to break-up the BCF which leads to

computing the power set faster in a parallel computing environment.

12

Methods – The Disjunctive Normal Form
Algorithm
• Next, we discuss load balancing.

• We perform load balancing before the DNF algorithms are run.

• The load balancing algorithm is a 2-pass algorithm:
• Pass 1 computes an (n-1) x (n-1) table using the PBCF. The columns represent

the cardinality m. The rows represent s.

• Pass 2 redistributes the q-maximums to the rows in the table with the least
number of sets (using the row totals).

13

Methods – The Disjunctive Normal Form
Algorithm
• Load balancing ensures that a single task does not compute all of the

sets with a cardinality close to m = ⎿n/2⏌ and s equal to 1.

• Instead of arbitrarily setting q, we calculate the q-maximums in the
(n-1) x (n-1) table using the following formula:

𝑞 =
1, If ∑ ℎ 𝑛, 𝑚 𝑆 = 𝑠 < max().

0, Otherwise.

where i is bounded by i∈ {1, 2, …, n-1}; max(i) is the i-th largest integer
in the table; the sum equals to the number of q-maximums.

14

Methods – The Disjunctive Normal Form
Algorithm
• For the trivial case m = 1, the 2-pass round robin algorithm simply puts the n

computations into a single task.

• The figure on the next slide compares the round robin distribution to the BCF.
• The flat line (in black) shows the final distribution after the 2-pass round robin algorithm.
• We prefer the flat line compared to the other two distributions when computing the power

set.

• The slide after next (slide 17) shows a partial (n-1) x (n-1) table with n = 12.
• It is always the case that the upper, center part of the table needs to be load balanced.
• q = 7
• Do not forget to zero-out the q-maximums.

15

Methods – The Disjunctive Normal Form
Algorithm

16

Methods – The Disjunctive Normal Form
Algorithm

17

m = 1 2 3 4 5 6 7 8 9 10 11
Row

Totals
12 11 55 165 330 462 462 330 165 55 11 2,058
0 10 45 120 210 252 210 120 45 10 1 1,023
0 9 36 84 126 126 84 36 9 1 0 511
0 8 28 56 70 56 28 8 1 0 0 255
0 7 21 35 35 21 7 1 0 0 0 127
0 6 15 20 15 6 1 0 0 0 0 63
0 5 10 10 5 1 0 0 0 0 0 31
0 4 6 4 1 0 0 0 0 0 0 15
0 3 3 1 0 0 0 0 0 0 0 7
0 2 1 0 0 0 0 0 0 0 0 3
0 1 0 0 0 0 0 0 0 0 0 1

Methods – The Disjunctive Normal Form
Algorithm
• Some notes:

• The most computer intensive sets to compute are those sets that have been
redistributed by the round robin algorithm.

• The round robin algorithm implements the q-maximums by writing snippets
of code which has to be inserted into the tasks.

• Using both the PBCF and the 2-pass round robin algorithm, the entire power
set for n = 26 can be computed in 55 seconds on the laptop used in [5], [6].
This is a 42.7% reduction in run-time.

18

Methods

• The differences between the CIB method and the DNF method:
• The CIB method contains two algorithms. The DNF method contains m-1

algorithms --- one algorithm for each cardinality m, 1 ≤ m ≤ n-1.

• The CIB algorithm terminates after 2n-1 iterations. The DNF algorithms
terminate after a pre-determined maximum has been reached.

• The CIB main loop contains a single DO loop. The DNF algorithms’ loops
contain m loops for each cardinality.

19

Methods

• Advantages of each method:
• The recursive algorithm is easy to program.
• The CIB algorithm is easy to understand and easy to program.
• The DNF algorithm runs in linear time in a parallel computing environment.

• Disadvantages of each method:
• The recursive algorithm runs in exponential run-time.
• The CIB algorithm runs in exponential run-time.
• The DNF algorithm requires pre-processing.

20

Empirical Evaluation

• We evaluate the methods on the Stampede2 supercomputer using
the Skylake (SKX) compute nodes.

• We will:
• Construct a task graph to show potential parallelism.
• Run the Intel Advisor to show the top 5 time consuming loops.
• Construct a scalability curve.
• Summarize the results of the algorithms.
• Outline a method to compute the power set for large n.

21

Empirical Evaluation

• We construct a task graph of the DNF algorithm to show the possible
parallelism in the program.

• The widest part of the graph shows the possible parallelism.

• The critical path shows maximum run-time of the program.
• Because computing 5,200,300 sets with 14 nested loops is more computer

intensive than computing 5,200,300 sets with 13 nested loops.

• See the Figure on the next slide.

22

Empirical Evaluation

23

Empirical Evaluation

• The Intel Advisor is a source code profiling tool.

• The Intel Advisor shows the top 5 time consuming loops.
• The algorithms with the largest number of sets to compute and those

algorithms with the greatest number of nested loops about the center n/2.
• Take the most time to compute the power set.

• See the Table on the next slide.

24

Empirical Evaluation

Top time-consuming loops
Loop Self-Time Total Time Trip Counts
[loop in dnf_new_14] 3.582 s 16.330 s 1
[loop in dnf_new_13] 3.511 s 16.360 s 1
[loop in dnf_new_12] 3.210 s 14.029 s 1
[loop in dnf_new_15] 2.779 s 13.960 s 1
[loop in dnf_new_11] 2.441 s 10.400 s 1

25

Empirical Evaluation

• The Intel Advisor Source Code Profiling tool is useful at times

• It can be used to confirm information you already know

• For instance, the top 5 time-consuming loops
• You know which ones they are
• The Intel Advisor tool confirms this

26

Empirical Evaluation

• Some notes on the Intel Advisor.

• The Intel Advisor suggests changing the data type inside the loop so
that it matches

• This will have a better chance of using the full vector register width
• I modified the code to use the I(4) data type
• The code ran twice as slow

27

Empirical Evaluation

• The next slide shows the scalability curve for the OpenMP DNF
algorithm.

• The scalability graph shows a linear relationship between cores versus speed-
up.

• We estimated the percentage amount of serial code using Equation
(6) in the paper.

• Then applied Amdahl’s law to obtain the scalability curve.

28

Empirical Evaluation

29

Empirical Evaluation
• The following table summarizes the results of the timing study of the

different methods.

30

n T0 T1 T2 Tp q CV Sp Ep
15 0.04 0.04 0.2 0.2802 9 0.6 0.7 1.4%
16 0.1 0.1 0.2 0.1832 10 0.3 1.2 2.5%
17 0.2 0.2 0.3 0.2549 11 0.7 1.0 2.0%
18 0.4 0.3 0.3 0.2155 12 0.5 1.3 2.8%
19 0.8 0.7 0.3 0.1174 13 0.2 2.8 5.9%
20 1.6 1.5 0.4 0.2557 14 0.7 1.7 3.5%
21 3.3 3.1 0.6 0.1097 15 0.1 5.4 11.3%
22 7.1 6.5 1.0 0.1770 16 1.1 5.5 11.4%
23 14.5 13.5 1.8 0.1487 17 0.8 11.8 24.6%
24 30.6 28.0 3.4 0.1149 18 0.3 29.3 61.0%
25 62.7 58.2 6.7 0.1733 18 0.4 38.5 80.3%
26 131.4 117.4 13.6 0.2746 20 0.5 49.5 103.1%

Avg 12.4 25.8%
Min 0.7 1.4%
Max 0.280196 49.5 103.1%

Empirical Evaluation

• T0 = recursive algorithm (seconds)
• T1 = CIB algorithm (seconds)
• T2 = non-OpenMP DNF algorithms (seconds)
• Tp = OpenMP DNF algorithms (seconds)

• Only one coefficient of variation (CV) above 1.0
• Much variability about the average.

• We obtain an efficiency (EP) of 100% (accounting for variability) because
the serial algorithm T2 ran poorly and the parallel algorithm Tp ran
efficiently.

31

Empirical Evaluation

• The serial algorithms T0, T1, and T2 have exponential run-time curves.

• The Tp parallel algorithm (OpenMP DNF algorithm) has a non-
exponential run-time curve.

• The graph on the next slide shows the graph for the input sizes versus
the run-times for the OpenMP DNF algorithm.

32

Empirical Evaluation

33

Empirical Evaluation

• Recommendations from the timing study

• The Stampede2 supercomputer is a shared machine
• If another job is thrashing while your job is running, this will affect your timing

study
• Run your job numerous times on different days to get a good timing

34

Configuration Management

• We computed the power set in its entirety for n = 15, 16, …, 26.

• Consider computing the power set for n = 150 and n = 45,136.

• Obvious some implementation limitations will come up:
• Integer exceeds machine limits.
• Segmentation fault.
• A single user can only have 25 jobs in queue at a time.

35

Configuration Management

• Some possible workarounds include:
• Use the –fno-range-check option when compiling the code.
• Overwrite the values in the array when the index reaches 231.
• Wait until some of the jobs have finished, then submit more jobs.

• The q-maximums are a second source of exponentiation.
• These values must be partitioned into smaller sets.
• We divide by 2n-15. This is also the required number of threads.
• Leave the remaining distribution as-is from the 2-pass round robin algorithm.

36

Configuration Management

• We conduct a small timing study up to n = 150 as a proof of concept.

• The max time always occurs at the largest q-maximum max(n,1) for any
n.

• This small timing study saves a single computation from a single
partition from max(n,1) for n = 15, …, 150.

• The next slide shows a graph of the input size versus the run-times.
• Using multiple nodes and multiple cores.

37

Configuration Management

38

Configuration Management

• The graph on the previous slide has 2 plateaus.
• These plateaus are probability due to the amount of nested loops as n

increases.

• Additional obstacles must be overcome before computing large
power sets:

• Compute the factorial of a number larger than n = 150; say n = 1,000 to
45,136.

• Automatically monitor the queue; and submit a batch job when one job has
finished.

39

Configuration Management

• Using the model from the timing study y = 0.0008n + 0.0883, it is
estimated that it will take 36.1971 seconds to compute the largest
partition for the power set for n = 45,136.

• The remaining tasks are smaller and will take less time.
• On the Stampede2 SKX compute nodes

40

Questions

• Thank you for attending.

• Does anyone have any questions?

• Profile and research: https://rogerlgoodwin.brandyourself.com

41

