Linearizing Computing the Power Set with OpenMP

11th IEEE Workshop Parallel / Distributed Combinatorics and Optimization
May 17, 2021
Roger L Goodwin

Introduction

- This paper presents 4 methods for computing the power set.
- Three methods are serial.
- One method is parallel.
- The three serial methods are:
- Recursive algorithm.
- Count-in-binary algorithm.
- Disjunctive normal form algorithms --- serial version, no OpenMP directives.
- The one parallel method is:
- Disjunctive normal form algorithms --- parallel version, uses OpenMP directives.

Methods - Overview

- Each method will be briefly explained next.

Methods - The Recursive Algorithm

- The recursive method contains two algorithms:

1) One algorithm partitions the problem by incrementing two counters \boldsymbol{k} and \boldsymbol{m} in recursive calls.
2) The other algorithm creates the actual sets in the power set $P(\Pi)$ from a set of integers.

- When $\boldsymbol{m}>\boldsymbol{n}=|\Pi|$, then the first algorithm terminates.
- Both algorithms create $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ sets in the power set
- Excluding the empty set

Methods - The Count-in-Binary Algorithm

- The count-in-binary (CIB) method creates $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ sets in the power set.
- The method is simplistic:

1) Count from 0 to $\mathbf{2}^{n}-\mathbf{1}$ in decimal
2) Convert the count to binary
3) Include/exclude elements from the given set Π using the binary number
4) $0=$ exclude an element from Π
5) $1=$ include an element from Π

- This particular implementation of the CIB algorithm reverses the ordering of the elements in the sets

Methods - The Count-in-Binary Algorithm

- For example, instead of computing the set $\{a, b, c\}$; the CIB algorithm computes $\{c, b, a\}$.
- Which are equivalent sets
- We make no effort to pad the binary numbers to the left with zeros.
- We make no effort to sort the computed sets so that the sets are more aesthetically pleasing.
- Hence, we present a Laissez-Faire CIB algorithm.

Methods - The Disjunctive Normal Form Algorithm

- The disjunctive normal form (DNF) method contains preprocessing steps.
- The partition of the binomial coefficient function (BCF)
- Load balancing using the partition of the BCF (PBCF)
- The BCF is as follow:

$$
\binom{n}{m}=\frac{n!}{(n-m)!m!}, \quad 0 \leq m \leq n
$$

- The BCF is a symmetric function.
- It sums to 2^{n} for $m=\{0,1, \ldots, n\}$.
- The maximum is at $\lfloor\mathbf{n} / \mathbf{2}\rfloor$ for even n.
- See graph on next slide (blue dashed line).

Methods - The Disjunctive Normal Form Algorithm

Methods - The Disjunctive Normal Form Algorithm

- We partition the BCF "given" the first element in the power set.
- This will be explained later.
- Note: Ignore sets with cardinality 1 or \boldsymbol{n}.
- Instead of programming the BCF function, we program the PBCF.

$$
h(n, m \mid S=s)=\frac{\prod_{i=1}^{m-1}(n-m)-(s-1)+i}{\prod_{i=1}^{m-1} i}
$$

Methods - The Disjunctive Normal Form Algorithm

- The variable \boldsymbol{s} is the cardinal number to the first element in the set.
- Two noticeable characteristics of the PBCF:
- One-half of the values are zero
- The function drops significantly for small s
- Only certain arrangements in the powerset are allowed using the DNF algorithms.
- Due to problem restrictions.
- The next slide gives an example.

Methods - The Disjunctive Normal Form Algorithm

- Suppose $\Pi=\{a, b, c, \ldots, z\}$ and $m=2$.
- Consider the sets $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{z}\}, \ldots,\{\mathrm{x}, \mathrm{y}\},\{\mathrm{x}, \mathrm{z}\},\{\mathrm{y}, \mathrm{z}\}$.
- The number of sets beginning with the element x is $h(n, m \mid S=24)=2$.
- The number of sets beginning with the element y is $h(n, m \mid S=25)=1$.
- The number of sets beginning with the element z is $h(n, m \mid S=26)=0$.
- But,
- The number of sets beginning with the element a is $h(n, m \mid S=1)=25$.
- The number of sets beginning with the element b is $h(n, m \mid S=2)=24$.
- The number of sets beginning with the element c is $h(n, m \mid S=3)=23$.

Methods - The Disjunctive Normal Form Algorithm

- Remove the restriction $\boldsymbol{m}=\mathbf{2}$. Then, $\mathbf{2} \leq \boldsymbol{m} \leq 25$.
- Only one additional set $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ is added to $h(n, m \mid S=24)$.
- Many sets are added to $h(n, m \mid S=1),(n, m \mid S=2)$, and $h(n, m \mid S=3)$.
- $h(n, m \mid S=1)=33,554,430$
- $h(n, m \mid S=2)=16,777,215$
- $h(n, m \mid S=3)=8,388,607$
- This is due to the nature of the problem.
- With the cardinality and the partition, it is possible to break-up the BCF which leads to computing the power set faster in a parallel computing environment.

Methods - The Disjunctive Normal Form Algorithm

- Next, we discuss load balancing.
- We perform load balancing before the DNF algorithms are run.
- The load balancing algorithm is a 2-pass algorithm:
- Pass 1 computes an ($\boldsymbol{n - 1}$) x ($\boldsymbol{n - 1}$) table using the PBCF. The columns represent the cardinality m. The rows represent s.
- Pass 2 redistributes the \boldsymbol{q}-maximums to the rows in the table with the least number of sets (using the row totals).

Methods - The Disjunctive Normal Form Algorithm

- Load balancing ensures that a single task does not compute all of the sets with a cardinality close to $m=\lfloor n / \mathbf{2}\rfloor$ and s equal to 1 .
- Instead of arbitrarily setting \boldsymbol{q}, we calculate the \boldsymbol{q}-maximums in the ($n-1$) $\times(n-1)$ table using the following formula:

$$
q_{i}=\left\{\begin{array}{lc}
1, & \text { If } \sum_{m=1}^{n} h(n, m \mid S=s)<\max _{(i)} . \\
0, & \text { Otherwise } .
\end{array}\right.
$$

where i is bounded by $i \in\{1,2, \ldots, n-1\} ; \max _{(i)}$ is the i-th largest integer in the table; the sum $\sum_{i=1}^{n-1} q_{i}$ equals to the number of \boldsymbol{q}-maximums.

Methods - The Disjunctive Normal Form Algorithm

- For the trivial case $\boldsymbol{m}=1$, the 2-pass round robin algorithm simply puts the \boldsymbol{n} computations into a single task.
- The figure on the next slide compares the round robin distribution to the BCF.
- The flat line (in black) shows the final distribution after the 2-pass round robin algorithm.
- We prefer the flat line compared to the other two distributions when computing the power set.
- The slide after next (slide 17) shows a partial ($\boldsymbol{n - 1}$) $\times(\boldsymbol{n}-1)$ table with $\boldsymbol{n}=12$.
- It is always the case that the upper, center part of the table needs to be load balanced.
- $q=7$
- Do not forget to zero-out the \boldsymbol{q}-maximums.

Methods - The Disjunctive Normal Form Algorithm

Methods - The Disjunctive Normal Form Algorithm

Methods - The Disjunctive Normal Form Algorithm

- Some notes:
- The most computer intensive sets to compute are those sets that have been redistributed by the round robin algorithm.
- The round robin algorithm implements the \boldsymbol{q}-maximums by writing snippets of code which has to be inserted into the tasks.
- Using both the PBCF and the 2-pass round robin algorithm, the entire power set for $\boldsymbol{n}=26$ can be computed in 55 seconds on the laptop used in [5], [6]. This is a 42.7% reduction in run-time.

Methods

- The differences between the CIB method and the DNF method:
- The CIB method contains two algorithms. The DNF method contains $\boldsymbol{m} \mathbf{- 1}$ algorithms --- one algorithm for each cardinality $\boldsymbol{m}, \mathbf{1} \leq \boldsymbol{m} \leq \boldsymbol{n} \boldsymbol{- 1}$.
- The CIB algorithm terminates after $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ iterations. The DNF algorithms terminate after a pre-determined maximum has been reached.
- The CIB main loop contains a single DO loop. The DNF algorithms' loops contain \boldsymbol{m} loops for each cardinality.

Methods

- Advantages of each method:
- The recursive algorithm is easy to program.
- The CIB algorithm is easy to understand and easy to program.
- The DNF algorithm runs in linear time in a parallel computing environment.
- Disadvantages of each method:
- The recursive algorithm runs in exponential run-time.
- The CIB algorithm runs in exponential run-time.
- The DNF algorithm requires pre-processing.

Empirical Evaluation

- We evaluate the methods on the Stampede2 supercomputer using the Skylake (SKX) compute nodes.
- We will:
- Construct a task graph to show potential parallelism.
- Run the Intel Advisor to show the top 5 time consuming loops.
- Construct a scalability curve.
- Summarize the results of the algorithms.
- Outline a method to compute the power set for large \boldsymbol{n}.

Empirical Evaluation

- We construct a task graph of the DNF algorithm to show the possible parallelism in the program.
- The widest part of the graph shows the possible parallelism.
- The critical path shows maximum run-time of the program.
- Because computing 5,200,300 sets with 14 nested loops is more computer intensive than computing 5,200,300 sets with 13 nested loops.
- See the Figure on the next slide.

Empirical Evaluation

Empirical Evaluation

- The Intel Advisor is a source code profiling tool.
- The Intel Advisor shows the top 5 time consuming loops.
- The algorithms with the largest number of sets to compute and those algorithms with the greatest number of nested loops about the center $\boldsymbol{n} / 2$.
- Take the most time to compute the power set.
- See the Table on the next slide.

Empirical Evaluation

Top time-consuming loops			
Loop	Self-Time	Total Time	Trip Counts
[loop in dnf_new_14]	3.582 s	16.330 s	1
[loop in dnf_new_13]	3.511 s	16.360 s	1
[loop in dnf_new_12]	3.210 s	14.029 s	1
[loop in dnf_new_15]	2.779 s	13.960 s	1
[loop in dnf_new_11]	2.441 s	10.400 s	1

Empirical Evaluation

- The Intel Advisor Source Code Profiling tool is useful at times
- It can be used to confirm information you already know
- For instance, the top 5 time-consuming loops
- You know which ones they are
- The Intel Advisor tool confirms this

Empirical Evaluation

- Some notes on the Intel Advisor.
- The Intel Advisor suggests changing the data type inside the loop so that it matches
- This will have a better chance of using the full vector register width
- I modified the code to use the I(4) data type
- The code ran twice as slow

Empirical Evaluation

- The next slide shows the scalability curve for the OpenMP DNF algorithm.
- The scalability graph shows a linear relationship between cores versus speedup.
- We estimated the percentage amount of serial code using Equation (6) in the paper.
- Then applied Amdahl's law to obtain the scalability curve.

Empirical Evaluation

Empirical Evaluation

- The following table summarizes the results of the timing study of the different methods.

n	T0	T1	T2	Tp	q	CV	Sp	Ep
15	0.04	0.04	0.2	0.2802	9	0.6	0.7	1.4\%
16	0.1	0.1	0.2	0.1832	10	0.3	1.2	2.5\%
17	0.2	0.2	0.3	0.2549	11	0.7	1.0	2.0\%
18	0.4	0.3	0.3	0.2155	12	0.5	1.3	2.8\%
19	0.8	0.7	0.3	0.1174	13	0.2	2.8	5.9\%
20	1.6	1.5	0.4	0.2557	14	0.7	1.7	3.5\%
21	3.3	3.1	0.6	0.1097	15	0.1	5.4	11.3\%
22	7.1	6.5	1.0	0.1770	16	1.1	5.5	11.4\%
23	14.5	13.5	1.8	0.1487	17	0.8	11.8	24.6\%
24	30.6	28.0	3.4	0.1149	18	0.3	29.3	61.0\%
25	62.7	58.2	6.7	0.1733	18	0.4	38.5	80.3\%
26	131.4	117.4	13.6	0.2746	20	0.5	49.5	103.1\%
Avg							12.4	25.8\%
Min							0.7	1.4\%
nnov				n 3 entof			105	$1 \mathrm{R}^{1} 10$

Empirical Evaluation

- $T_{0}=$ recursive algorithm (seconds)
- $\mathrm{T}_{1}=$ CIB algorithm (seconds)
- $T_{2}=$ non-OpenMP DNF algorithms (seconds)
- $\mathrm{T}_{\mathrm{p}}=$ OpenMP DNF algorithms (seconds)
- Only one coefficient of variation (CV) above 1.0
- Much variability about the average.
- We obtain an efficiency (EP) of 100% (accounting for variability) because the serial algorithm T_{2} ran poorly and the parallel algorithm T_{p} ran efficiently.

Empirical Evaluation

- The serial algorithms T_{0}, T_{1}, and T_{2} have exponential run-time curves.
- The T_{p} parallel algorithm (OpenMP DNF algorithm) has a nonexponential run-time curve.
- The graph on the next slide shows the graph for the input sizes versus the run-times for the OpenMP DNF algorithm.

Empirical Evaluation

Empirical Evaluation

- Recommendations from the timing study
- The Stampede2 supercomputer is a shared machine
- If another job is thrashing while your job is running, this will affect your timing study
- Run your job numerous times on different days to get a good timing

Configuration Management

- We computed the power set in its entirety for $\mathrm{n}=15,16, \ldots, 26$.
- Consider computing the power set for $\mathrm{n}=150$ and $\mathrm{n}=45,136$.
- Obvious some implementation limitations will come up:
- Integer exceeds machine limits.
- Segmentation fault.
- A single user can only have 25 jobs in queue at a time.

Configuration Management

- Some possible workarounds include:
- Use the -fno-range-check option when compiling the code.
- Overwrite the values in the array when the index reaches $\mathbf{2}^{\mathbf{3 1}}$.
- Wait until some of the jobs have finished, then submit more jobs.
- The q-maximums are a second source of exponentiation.
- These values must be partitioned into smaller sets.
- We divide by 2^{n-15}. This is also the required number of threads.
- Leave the remaining distribution as-is from the 2-pass round robin algorithm.

Configuration Management

- We conduct a small timing study up to $\boldsymbol{n}=150$ as a proof of concept.
- The max time always occurs at the largest q-maximum $\max _{(n, 1)}$ for any n.
- This small timing study saves a single computation from a single partition from $\max _{(n, 1)}$ for $n=15, \ldots, 150$.
- The next slide shows a graph of the input size versus the run-times.
- Using multiple nodes and multiple cores.

Configuration Management

Configuration Management

- The graph on the previous slide has 2 plateaus.
- These plateaus are probability due to the amount of nested loops as \boldsymbol{n} increases.
- Additional obstacles must be overcome before computing large power sets:
- Compute the factorial of a number larger than $\mathrm{n}=150$; say $\mathrm{n}=1,000$ to 45,136.
- Automatically monitor the queue; and submit a batch job when one job has finished.

Configuration Management

- Using the model from the timing study $y=0.0008 n+0.0883$, it is estimated that it will take 36.1971 seconds to compute the largest partition for the power set for $n=45,136$.
- The remaining tasks are smaller and will take less time.
- On the Stampede2 SKX compute nodes

Questions

- Thank you for attending.
- Does anyone have any questions?
- Profile and research: https://rogerlgoodwin.brandyourself.com

